Experiments on Central Cross Protection with Candu1 Mod

UFO Doctor, Oct, 1st, 2011, rev. Oct, 2nd, 2011

1. Introduction

The central cross of the ARDrone needs to be very stiff, but will break at hard landings. Candu1 designed a brilliant easy protection method: plastic 4.5 mm cable ties mounted at each foot. With an additional weight of only 5 grams the impact forces at hard landings will be reduced by a factor of 2!

2. Material

Cable ties were mounted according to Candu1 at the feet the ARDrone (Fig.1.)

Fig. 1. Shock protection proposed by Candu1:

1: Cable tie; 2: Strong adhesive tape; 3: File front foot flat before tighten cable tie! 4: Adhesive tape 18x40mm; 5: Only 20 mm of the tie inserted into the hull.

Material under test:

- Nr.1: No protection. this is the reference
- Nr.2: Cable ties 7.50 x 1.91 x 230mm, weight 15 grams for 4 units
- Nr.3: Cable ties 4.50 x 1.57 x 200mm, weight 5.5 grams for 4 units
- Nr.4: Cable ties 4.46 x 1.34 x 200mm, weight 5 grams for 4 units

3. Test method

The ARDrone was stepwise compressed from 0 to 30 mm and the generated force was measured with a bathroom scale (Fig. 2.)

Fig. 2. Test setup

1: 0 to 30 mm pressed by drill press; 2: Lipo in basket; 3: Bathroom scale

4. Experimental Results

Fig. 3. Experimental Data: Force versus Compression

Nr.1: No protection Nr.2: Cable ties 7.50 x 1.91 Nr.3: Cable ties 4.50 x 1.57 Nr.4: Cable ties 4.46 x 1.34

5. Discussion

The theory on shock absorber is a complicated subject. But in general you have to explore the maximum permissible impact force (in our case 60 N without damage) and you should design the compression range of your mod as large as possible. In our case the 4 cable ties 4.46 x1.34 mm offer an additional elastic compression of 15 mm at a force of 60N.

Let us assume that the total mass of the ARDrone with Miru mod is a concentrated mass of 416 gram, tackle to the damping system:

You may now come back to earth on hard concrete with 2.2m/sec vertical speed, if you land on all of your four feet! Perhaps you may land faster without damage (at your own risk!), please give me a feedback!

Kind regards and enjoys the flights with the now well protected ARDrone! UFO Doctor

5. Appendix: Experimental results, please be careful!

Here you will see the deformation of the Nr.4 cable tie under load from 0 to 35mm compression! Please be careful, you might kill the central cross of your drone!

Fig.4a: No load, 0 N

Fig.4c : Compression 10 mm, 12.7N

Fig.4e: Compression 20 mm, 33N

Fig.4g: Compression 30mm, 64.3N

Fig.4b : Compression 5 mm, 6.7N

Fig.4d : Compression 15 mm, 21.7N

Fig.4f: Compression 25 mm, 47.3N

Sorry, the damping system lost here the elasticity characteristics.

Please do not apply forces > 65 N to your ARDrone!

The central cross or the EPP housing might be damaged!

Fig.4h: Compression 35 mm: problem!